
Copyright © 2001 Peter Funk 

Processes and Structured Transition Rules 
for Case-Based Reasoning 

Peter Funk 
 

Mälardalen University, Department of Computer Science and Engineering 
P.O. Box 883, Västerås, Sweden 

peter.funk@mdh.se 
 
 
 

Abstract 
Traditional notations of processes are often based on nota-
tions that are formalized with different types of automata 
and a suitable domain specific (graphical) notation. These 
notations allow elaborate analysis of the processes such as 
proving equivalence between processes. They are also effi-
cient in capturing exact behavior, but are sometimes regarded 
as difficult to use by users less familiar with formal nota-
tions and do not always promote easy reuse and stepwise 
refinement. 
   A notation for processes using transition rules and catego-
rization of formulae in transition rules is exemplified and 
proposed for applications domains such as business proc-
esses, system development processes etc. Transition rules 
enable users to successively refine the processes and also 
enable similarity measurements and reuse in a Case-Based 
Reasoning approach. Transition rules in the proposal handle 
also time, important for some features. Using formalized 
transition rules also gives access to logical based tools (veri-
fication, simulations). 

Introduction 
Processes are increasingly popular in company’s and are 
used to store experience. These processes have often been 
refined and improved during long use and capture essential 
experience gained by employees (failure and successes). 
Such processes may capture how to handle unsatisfied 
customers, resolve conflicts with business partners, reor-
ganize the organization or business modelling (Chen-Burger 
and Robertson 1998) and (Watson I. 1997). These proc-
esses reflect a comp anies experience in a variety of issues 
and may be a key to a company’s success or failure. Proc-
esses may capture experience in a wide area of applications, 
e.g. product development, customer handling, business 
processes, employment processes and maintenance in-
structions. Individual work instructions and work flow 
diagrams may be stored together with the tasks. Task are 
building block of processes (explained further on).  
 The captured skill and experience is expensive to gain 
and is often acquired over a long period of time and build-
ing experience bases is an important issue in most areas, 
e.g. in software engineering. For more on CBR in software 
engineering, see Althoff, Birk, Wangenheim, Tauz 1998. 
Half of all software development projects fail (Sommerville 

1994) so less successful cases are a large part of the experi-
ence and should also be kept in the case library to avoid 
repetition of past failures. Development processes are often 
used to identify quality and lead-time problems at an early 
stage by providing clear checkpoints for project members, 
project leaders and management. Many large companies in 
technical intense areas have tens of thousands of people 
working in different development projects. Savings are 
considerable if experience can be transferred efficiently 
between these people using techniques such as Case-
Based Reasoning. 
 A generic internal notation for processes that enables 
tailoring, validation, verification and reuse of processes is 
proposed. This notation has been successfully applied in a 
CBR system developed for the domain of telecommunica-
tion services, called CABS, Case-Based Specification (Funk 
1998). The notation confronting the user should be adapted 
to the application domain and should follow users requests 
and state of the art (graphical) notations for the domain 
(this is not further explored in this paper). When reuse of a 
task occurs, previously collected experience that is cap-
tured in the reused parts originating from e.g. local im-
provements, successful and less successful experience, 
extension with metrics and standards is also retained. If the 
user changes a process or creates a new process for some 
purpose, this is stored in the case library together with 
feedback on how well the outcome of the modified or new 
process was. This paper is part of the work to extending the 
CABS system to new application domains. 

Formulae 
Before defining processes, tasks and cases we define for-
mulae. The next section describes tasks and transition rules 
where formulae are used (condition and conclusion part). 
Formulae are attributes and relations as used in predicate 
logic, they may be true in a given moment or false. Exa mple 
of a conjunction of predicates (non decomposable formulae 
may be negated with “no” and attributes with capital letters 
are instantiated or uninstantiated variables, for semantic 
see Funk 1998): 



egg(6) & flour(2,dl) & milk(3,dl) & 
butter(2,spoons) & frying_pan(1,teflon) 
& gas_stove(g1) & bowl(b1) & bowl(b2) & 
no gas(X) & no pancakes(X) 
 

 Every formula has a well defined meaning in the applica-
tion domain. An ontology for the application domain will 
give the necessary means for a selecting formulae. In most 
domains the formulae may be divided in different catego-
ries. From a logical point of view there may not be a need 
for categorization of these formulae (predicates), but for 
some application domains categorization gives advantages 
in a case-based reasoning approach (different categories 
may have different significance in matching, se matching 
section). In the domain of telecommunication services (the 
first application domain for the CABS system) three catego-
ries where used, in-signals, out-signals and facts. In-signals 
are events and out-signals are not observable by the sys-
tem and facts are true or false, and continue to be so until 
otherwise concluded in a conclusion part of an executed 
transition rule (see next section). 

Tasks 
Atomic tasks are transition rules and are the smallest units 
the case-based reasoning system handles and tasks may be 
reused individually or in sets (part of a process or a com-
plete process description). The application domains tar-
geted have time as an important feature, hence tasks have a 
strict time handling. If t is the current time and dt is the time 
needed to produce the conclusions, then t+dt is the time 
when the conclusions are available. “p” stands for prov-
able. Conditions and conclusions (called input and output 
in the paper) are conjunctions of atomic formulae. 
 

    p(Conditions, t) -> p(Conclusions, t+dt) 
 

Atomic tasks do not contain other tasks (further on atomic 
tasks are called ”task”) and are the finest granularity of 
causal relations used for describing processes. In our ex-
ample in Table 1 an exa mple on how atomic formulae in 
condition and conclusion part are divided into categories. 
The ontology for the application domain should determine 
these categories (dynamic assignment of categories is not 
implemented in the prototype). The example structure in 
Table 1 is: 1) Name (a unique name naming the task). 2) 
Resources is a conjunction of items that are consumed, 
food items are consumed during dinner preparation. The 
consumption of resources may be a domain rule. 3) Tools 
is a conjunction of items that are considered more perma-
nent in the domain, e.g. frying pan & stove & 
bowl & chef. Tools are by default available after a task 
is completed (application domain rule). There may be occa-
sions where a task removes or creates a tool (worn out, 
replaced, built etc.). Relations are formulae with two or more 
attributes are used to describe relations, e.g. re-
places(soya_flour, egg).  

If the conditions in the task are provable at time t, output 
is necessarily provable at time t+dt. The time dt is the time it 

takes to complete a task is individually calculated or esti-
mated (based on previous experience) for each task. 
 

Task: prepare pancake batter 
Task content (plain text): mix ingredi-

ents in bowl until batter is smooth.  
Resource: 1 egg & 2 dl flour & 3 dl 

milk, 2 spoons butter 
Tools: bowl & mixer & spoon & person  
->  
Output: pancake batter & dirty bowl & 

dirty mixer 
Time to prepare: 2 minutes 

 

Table 1. An example of a task (syntax eased) 
 

 In the example person (e.g. a chef) may be considered as 
an odd tool, and it may be worth to consider if a category 
agents is appropriate. Agents being able to interact with 
their environment, with different level of abilities and ex-
perience, e.g. an experienced chef would be able to crea-
tively solve different problems perhaps replacing eggs with 
Soya flour if there is lack of eggs or a vegetarian amongst 
the guests (if this is not known as a application domain 
fact). However tools and agents are similar in our domain in 
that they both still are available after a task has been com-
pleted (the chef and frying pan are both available for other 
tasks once the task has been completed). The task content 
is dependent on the domain (and the actors), if it is a robot 
then the task content may be a program, in industry it may 
be a work flow diagram, for a amateur chef it may be plain 
English with illustrations. 
 For more on the formal notation of logic used see (Funk 
1998). There is no need for the user to know the formal 
notation. The semantic link to the application domain is 
maintained with application domain specific notations and 
terminologies (graphical/textual). The connection to domain 
specific notations is not further explored in this paper. 
 In Figure 1 an example of a graphical notation for a task is 
shown (used in the graphical process example in Figure 2).  
Task definition: the transition rule with conditions and 
conclusions. Task description: is an informal description of 
the task. Task information: may be information such as 
record on how successful the application of the task has 
been and even comments, suggestions from previous us-
ers. 

 

 
Description & Definition 

& Information 
 

Input 
Output 

Task name  

 
Figure 1. Task with input, name and output 

Composed Tasks 
In many domains it is often natural to group a number of 
tasks in one “unit”. A composed task is such a unit of tasks 



(composed or atomic tasks). In this way a process may be 
described in layers. Layering is often a user request and 
used in successful state based approaches, e.g. state 
charts. This enables a recursively layered structure of tasks 
(no self reference is allowed, which can be automatically 
detected since formalism is based on predicate logic). The 
current prototype handles two layers and will be extended 
to handle any level of layering. It is always possible to 
expand all decomposable tasks until a process only con-
tains atomic tasks. There may be different ways to solve a 
problem since the same result may be achieved in different 
ways using different tasks. 

Process Notation and Cases 
Processes are represented as a set of tasks that are ordered 
in such a way that the process produces the output given 
the available input (resources, tools, etc), costs constraints 
and time constraints (Figure 2). Input to a process is the 
sum of all input required by the tasks after reduction of 
internally produced input (a,b,c,d).  
 
 

 

 
 Input Output 

Process: Prepare pancakes with strawberrycream 

prepare batter 

whip 

fry 

mix 

serve a 

b 

c 

d 

Figure 2. Example of a process (simplified) 
 
Every previously applied process and all tasks in the proc-
ess will be stored as a case (size of case library is not an 
issue for the application domains considered). A process 
can be seen as decomposable task. It is more likely that 
parts of cases will be reused than full cases. The reason is 
that a new problem having similar or even the same output 
to a previous case most likely has different circumstances, 
restrictions and available resources, hence parts need to be 
modified or replaced. 
 Cases may also store additional information on where, 
when and how many times the case has been reused and 
how successful the case was etc. 

Problem Description 
The problem description may be a more or less completed 
task or process descriptions extracted from the users prob-
lem description and a given problem context (what re-
sources and tools are  currently available) and domain (do-
main specific rules). In some application domains only the 
output may be given and the solution is a process able to 
produce the output together with a list of resources and 
tools needed to produce the output. In other application 
domains some desired properties for tasks or subprocesses 

may be given (e.g. use only ISO9000 certified tasks for 
welding pipes). 
 

Matching and Reuse 
An outline of retrieval and reuse is given (see Figure 3).    
 Step A: In step A the input problem is translated (or used 
to induce) a set of skeleton tasks. A skeleton task  is an 
incomplete task in respect to missing or even incorrect 
conditions and conclusions. A task stored in the case li-
brary is expected to include all input and output, be vali-
dated, verified and previously used in a case. Application 
domain knowledge may be used to fill in or modify parts of 
the skeleton tasks or give the user suggestions to improve 
the problem description. 
 Step B: In step B the skeleton tasks are matched with 
cases in the case library. This is a set based matching, and 
for each formulae category in the condition and conclusion 
part, a triple value is assigned (intersection, disjunction 
between the skeleton task category and transition task 
category and transition task category and skeleton task 
category). These triplets give a set of values describing 
similarity between tasks. If in the particular application 
domain or specific problem resources are more important 
than tools, the triplet value for resources may be given a 
higher weight (a application domain where resources are 
the bottleneck but tools can be fabricated, borrowed or 
bought if necessary). The triplets are summed for each 
matching tasks in the case library are ranked according to 
their sum, an approach that gives good results for some 
domains, shown in (Funk 1998). For each skeleton task a 
ranked list of matching tasks is produced. 
  Step C: These lists are given as input to step C that 
ranks the cases that best match the problem description 
and skeleton tasks. Each case is assigned a number accord-
ing to how many skeleton tasks have a good scoring coun-
terpart in the matching case (process). A threshold value 
for “good” matching tasks must be set by the user (the 
performance of the matching has in the domain of telecom 
services shown to be very insensitive to a wide range of 
threshold values).  
 Step D: In step D the best case is selected or if there are 
more cases covering different parts of the input problem, 
appropriate parts may be merged. If there are still parts from 
the problem description that are not covered, tasks may be 
identified to fill in the missing parts. Induction is another 
possibility and new tasks can be constructed, filling in the 
missing bits (may require human interaction). 
 In all three steps we use domain knowledge and problem 
context (illustrated by containers in Figure 3). One example 
for B and C is that if a matching case requires tools that are 
not available (tools may have a cost associated with them) 
it is scored lower than a task with similar input and output, 
requiring only tools that are available but missing some 
resources. Domain rules capture information for the domain, 



e.g. which resources are replaceable with other resources 
(the egg and Soya flour exa mple). 

 

Problem Description 
Describing Processes 

Requirements 
 

A)Translate Input to a 
set of Tasks skeletons 

Requirements 
skeletons 

B) Match with 
Atomic Tasks 

D) Construct a 
Process  

Case 
Library 

R 

e  

t  

r  

i  

e 

v 

e 

R 

e  

u  

s  

e Proposed Solution 

C) Match with 
Process Cases 

Domain 

 
Domain 
Rules  

Best matching 
cases 

 

Tasks 
grouped in 
processes 

Problem 
Context 

Current 
Resources, 

Tools, 
Relations 

 
Figure 3. Outline of retrieval and reuse 

Revision and Restore  
Since the tasks are formalized and the problem context and 
domain are available, the proposed solution can be simu-
lated by the user. These simulations may be stored with the 
solution case (such test-cases may be essential in a CBR 
approach where cases may be modified or evolve, e.g. be-
ing software functions, see Minor and Hanft 1999). Storing 
cases in the case library is made in a traditional way, mainly 
with some generalization performed on tasks. How success-
ful a solution is should also be stored with the new case 
and its history (from where it stems, modification records, 
how often reuse has occurred, etc.). 

Conclusions 
This paper proposes that formulae in transition rules are 
categories to improve matching. This modification will gen-
eralize the CABS system to handle other domains than tele-
communication services (the categories in-signal, out-
signal and fact used in the first version of CABS are highly 
domain specific). Enabling a structure of categories se-
lected by the user and used in the matching process, to 
handle different significance for different categories, is 
proposed. Decision on what categories are used should be 
based on the ontology for the application domain. Testing 
the approach on new application domains will be the main 
focus on future work in CABS. 
 Tasks are also proposed to be layered in more than two 
layers. These extensions have not been fully implemented 

in the prototype but it is argued that they are reasonable. 
Categories improved the matching in CABS for telecommu-
nications services. An example of different significance for 
categories is if resources is the main constraint in the do-
main, but tools can be borrowed if missing (e.g. cooking 
food in a student dormitory, ingredients are more precious 
since student are short of money, but kitchen tools may 
easily be borrowed from some other student). The matching 
process should be directed towards solutions where re-
sources differ less from what is available and differences in 
tools should influence the ranking of the proposed solu-
tions less. 
 The matching is carried out in two steps, first tasks are 
matched and thereafter processes. The formalization in 
tasks also enables consistency checks, verification and 
validation by simulation of the proposed solution. 

References 
Althoff K.-D., Birk A., von Wangenheim C. G. and Tautz C. 
1998. CBR for Experimental Software Engineering. In Case-
Based Reasoning Technology: From Foundations to Ap-
plications. Lenz M., Bartsch-Spörl B., Burkhard H.-D., 
Wess S. (eds). Springer. 
 
Chen-Burger Y.-H., Robertson D. 1998. Formal Support for 
an Informal Business Modelling Method. In Proceedings 
Tenth International Conference on Software Engineering 
and Knowledge Engineering, SEKE'98. 
 
Funk, P. 1998. CABS: A Case-Based and Graphical Re-
quirements Capture, Formalisation and Verification System. 
Ph.D. diss, Department of Artificial Intelligence, University 
of Edinburgh. 
 
Funk, P. and Crnkovic, I. 1999 Case-Based Reasoning for 
Reuse and Validation of System Development Processes. In 
Challenges for Case-Based Reasoning, Proceedings of the 
ICCBR’99 Workshops. Schmitt S.,Vollrath. I., (eds). Univer-
sity of Kaiserslautern. 
 
Minor M. and Hanft A. 1999. Cases with a Life-Cycle. In 
Challenges for Case-Based Reasoning, Proceedings of the 
ICCBR’99 Workshops. Schmitt S.,Vollrath. I., (eds). Univer-
sity of Kaiserslautern. 
 
Sommerville I. 1996. Software Engineering. Fifth edition 
part 1, Addison Wesley. 
 
Watson I. 1997. Applying Case-Based Reasoning: Tech-
niques for Enterprise Systems, Morgan Kaufmann. 
 


